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I: ABSTRACT

Given the linear, oricnted, and weighted graph of a linear active
equivalent network N, a closed flowgraph can be generated. The
system of linear equations represented by the Tlowgraph is obtained by
a topological method and describes four sets of equations: the
Kirchhoff voltage- and current-law equations, the voltage-current
relationship equations, and the so-called control equations for the
dependent generetors in the network. A solution for any dependent
variables in terms of the independent generator-variables can be
obtained by open flowgraph techniques. For computer implementation the
closed flowgraph is most suitable.

Finding network transfer Tfunctions, sensitivity and tolerance
functions,consists of generation and evaluation of .the flowgraph. An
algorithm is presented, which generates a closed flowgraph from the
linear graph of network N in ihe formz of the flowgraph incidence
matrix Am, an array Gn vhich gives the gains associated with
each flowgraph edge, and an array F dindicating the frequency dependence
of the edges in the flowgraph. .

I¥. INTRODUGCTION

From netvork topology it is known (11,72],(3], thet for a linear.
active network with dependent sources the following equation can be written.
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This equation expresses in matrix form Kirchhoff's voltage law (KVL), .
Kirchhoff's current law (KCL), the voltage-current relationship (VCR) and
the control relationship (CR) equations.
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Matrix Bf is the fundamental circuit (f-circuit) matrix and Qf

is the f-cutset matrix of the linear graph corresponding to the network.
Submatrices Y and Z express both the VCR and the CR equations.
{Vl e VeIl “es Ie} is the variable vector for the edge voltages and

currents of the linear graph {e is the total number of elements). Ig(s)
ang Ee(s) are the independent current- and voltage-generators

respectively in the network. Equation (1) can be represented by a
Mason flowgraph [2]), [U4] the properties of which are given below.

l. Properties of the Flowgraph

Fach variable in the vector {:Vl veoe VI .. I } is represented
. el e
by one node. The sources defined by Mason [2],[4], are the "known
variables'. There are e voltage nodes (top row) and e current nodes
(vottom row) in the flowgraph. The KVL matrix equation, BfVe(s) =0,

governs the relationships between the voltage nodes; and the KCL
matrix equation Qer(s) = 0, indicates the relations between the current

nodes. The VCR matrix equation gives the "vertical" node-relations in the

form V, =21, or I, =Y,V,, where a transmittance Z, 1is directed
i it i ii ’ i

from a current node Ii to a voltage node - Vi; or, similarly, Yi is
directed from Vi to Ii for the latter. The CR equation gives the

generator dependence. Dependence of a dependent generator on &
controlling element in the networkx is given by a transmittance from the
controlling variable-node to the node of the controlled element. The
gain of the transmittance is the "control-constant". If a varisble x

J
is a function of xi: xj = aijxi’ then a transmittance edge is
directed from node xi to node x, ; the gain associated with the edge

J

is The following example will clarify the procedure for obtaining

.,
13
the flowgraph.

2. Fxample of a Flowgranh

From the equi#alcnt network in Fig. 1, the flowgraph is to be
obtained. fter the linear graph has been found a tree T 1is chosen
containing all the voltage-generators and possibly some passive elements:
T = (1,4,7) vhere edge i is an independent voltage-generator, edges
L4 and 7 are passive elements. The KVL matrix equation can now be stated:

11010 0 v,

0 0 1-1 0 0 . .
00 0-1 1 0 : = v ve
[000001-1‘ ' :




In the flowgraph, the chord voltage in an f-circuit is expressed in
terms of the branch voltages.

Similarly the KCL matrix cquation, Qer(s) =0, is:
-1 1 0 0o 0o o ol |1
0 -1.1 1 1 0 0 : = [0] (3)

0 0 0 0 -1 1.1 I,
vhere for the flowgraph the branch current in a f-cutset is expressed
in terms of the chord currents. The VCR equations are:

Vi, = 4,1, I, =YV,
Vo = 20y I3 =YgV (4)
Ig = XV

for branches and chords respectively. The control (CR) equation yields:

Ig =gV, : (5)
The flowgraph for eq. 2,3,4 arnd 5 is shown in Fig. 3.

The flowgrapn, and the linear graph are equivalent descriptions
of the same network; in the first the "dichotomous' character is explicit,
because each element is represented with two variables Vi and Ii .

A solution for the unknown variables in terms of the known sources is
obtained by evaluating the flowgraph. Using Mason's gain formula [2],[h],
the gain 'G can be expressed as: :

6 = x,/x, | (6)

where Xs is the independent source node and x, is the variable node as

shown in Fig. 4. A closed flowgraph [6]-[10] is formed, when a transmittance
J is added which is directed from node X, to node xi (3 is used as a tagging
parameter [10] and J '

which is known as Shannon's gain formula [5],[9], where H(1) is the

summation of gains over all loopsets containing j, and H(o) the summation

of gains for all loopsets devoid of j. Using the closed flowgraph apprroach
all loop sets can be found by an algorithm [1L4], which generates the circuits
in the Mason graph and tags those circuits containing edge j. To generate
the closed flowgraph from the linear graph of network N the following
algorithm is developed.

.

III.. PROCEDURE FOR OBTAINING THE CLOSED FLOWGRAPH BY DIGITAL COMPUTER

A. The steps of the procedufe are
i) From a given linear active network obtain the equivalent network N .

ii) Obtain the linear,'orientcd, and weighted graph from N .




iii) Select &1l independent and dependent voltage generators as branches
of tree T vwith possibly some passive elements to form a complete
set of branches and the current generators and remaining passive

elements as chords. Then number the edges according to the following
rules:

a) Number all chords first in ascending order from 1 up to and
including A= e-v+l

b) Continue to number the branches from 4 +1 wup to and including
e ;3 and

c) Number the v nodes of the graph arbitrarily.

iv) The linear graph will be coded in matrlx G, called the graph matrix,
and the array A(§) (to be described in (v)), both of which are used

as data input for the computer. The following is a detailed
description of G:

¢ =[G, G ] (8) -

where G, . is of order 6 x « , and describes the properties of the chord

elements’, whereas Glg)is of order 6 x r, (r=v-1l) and describes the

-properties of the branch elements of thé'@raph. Entry glj of row 1 of G
represents the number of the origin node of edge e (35=1,2,...,e) in the

linear graph; entry g denotes the target node of e, (rows 1 and 2 give
the orientations of tgé edges). Let i - be the subsgript number ‘
belonging to edge e, . If entry g3j = i (row 3) then element e, is a

J

dependent generator, controlled by the current or voltage of elementi e.;
if g3j = j (the subseript number of ej) then element ej is a passive

element; and if g3j = 0, then ej is an independent generator. In

row 4, the numbers 1,2,...,e are entered, referring to the edges of
the linear graph, It is now shown that rows 3 and 4 together,
-determine what kind of element e, is. ZElement e, can be any of the

J J

following eight kinds' of network elements.
Case I. If g3j = 0 and ghj = j, then the number j in the column

corresponding to edge e, is compared witan u where u refers to the

J

last column of Gll: ifJ <wu, element‘/e'3 corresponds to a column in

G,,. Since g3j= 0, e is an independent current generator.

11 j

Case II. - If g3j = 0 and ghj =3, but J >u, element eJ is described

in G12 5 gBJ being zero,implies that eJ is an independent voltage

generator.

Case III. TIf g33 = ghj = j;and J <, eJ is in Gll’ and is a passive

element with admittance Y

P




Case IV, If g3j = ghj = J and j>u , eJ is described in G12 and is a
passive element with impedance Zj' The next four cases relate the

controlled generator element ej to the controlling generator e; -

Case V. If 33j = i, ghj = Js and 1, < u, then ei and e are

J
described in Gll’ and e.j is a current controlled current generator
controlled by element ei'(e.g. IJ = BIi, vhere both currents are

related by the current gainB ).

Case VI. If g33 =i, ghj =J,1 >wu, and J < u, then e, is described

i
in Gl2’ and eJ in Gll,implyiﬂg that eJ is a volltage controlled current
generator, related to e by a transfer admittance & IJ = ngi .

Case VII. If g3j = 1 and ghj =3, but 1 <y and § > w, then

ej is a current controlled voltage generator, dependent upon the
current in element e by the transfer impedance Zm: vV, = ZmIi .

J

Case VIIY. If g3j =i, ghj = Jjand i, > u, Doth e, and e'j are

described in G12; and ej is a voltage controlled voltage generator
dependent upon e, by the voltage gain "a': Vj = aVi . The frequency

dependence of element ej is given in row 5. IEntry gSj =1 (-1) if the

weight of edge e, in the linear graph has the form Ks (K/s) where K is

J
the immittance value of element e,; and gs3 = 0 for resistive elements
and generators. J

* Finally, row 6 is coded according to the type of network function
desired as described below.

To obtain a current gain (Sec II),l/j:IJ/Ik, where Ij is the

current variable of ej, Ik is the independent current source and J is
the edge which closes the Mason graﬁh, set By = -1 and g6j = -1

-1

in row 6 of G. For the transfer function 1/j = Vj/Ik make Bex

and g6j = 1. (VJ is the voltage variable of eJ). For determining

= = i o= - = . T
Zd 1/3 Vk/Ik, set 86k ‘1 and g6j 0 For the transfer |
. admittance gain, 1/j = Ij/vk’ set gg, = l‘ and g6j = -1 ; for voltage
gain, 1/3 = VJ/Vk, enter gy = 1 and géj = 1 ; and for the driving

i i = = = ¢ = . that
point admittance Y 1/3 Ik/vk set gg, = 1 and g, 0 Note tha

d J
according to the entries of row 6 of G, the algorithm closes the Mason
graph with edge jJ.



V.

vi.

The array A(j) of order 1 x e, is the input data for the element valucs

of the linear graph and the entries correspond to the immittances, control
constants and zeros for the independent g%ﬁerators. The values g j’g23’
“es Bgy of the graph matrix G and the '} entry 2, of array A(j}

are punched in one card. Since one card is needed for each edge of the

- linear graph, e cards are punched.

Finally one card is punched to enter the values of e and v (i.e. the
numbers of edges and vertices) of the linear graph. The algorithm now
generates the closed flow graph from the data of the e+l cards.

B. The closed flowgraph represented by A, G and F .

&) Matrix Am is defined as the flowgraph incidence matrix, m
of order 2e x €rs where e 1is the number of edges of the linear graph
and es is the number of edges in the flowgraph (e current nodes and e
= 1(-1) if edge e, is
J &%

incident at node i of the flowgraph and oriented away from (toward) i;

voltage nodes sum to "2e" nodes). Intry a,

and aij = 0 if eJ is not incident at node i. Am is given by
P : oo
Am ] 0 | : {
1 | i ' |
| | | 1 .
| i : i
Ay = foooo- e e e L victy (9)
i
b I ! |
D W
L | m22 i : e ]
Here submatrix A corresponds to the KCL equation (nodes of Am are
11 11
the flowgraph current nodes) (see section 1), Am to the KVL
22
equation (nodes of A correspond to the voltage nodes) and matrices
22 )

V and C give the inter-nodal relationship of both the VCR and CR
equations. J is the last column of Am and represents the edge J by

which the Mason graph is closed.
b) Matrix G as defined by

¢ = (¢ G d 0] ' (10)
n n n

re (e )
: 11 12
the gains of those edges of the flowgraph corresponding to the columns

is of order 1 x give



of , ) . The entries of G are the values of the
iyt Vg, , - 13

immittances and control constants for the edges corresponding to the

columns of submatrices V and C. Tnhe last entry of Gn is zero for edge

3.
¢) Matrix F as defined by

F=[0 o F_ o] (11)

is of order 1 x e, . The columns of F correspond to those of Am . F

f

gives the frequency dependence as obtained from row 5 of G, where the

non-zero entries appear only in Fr’ since edge j and the edges of Am
11

and A are not frequency dependent. The KCL matrix equation can be

22 ’
written as Q.I (s) = [qQ Ul 1 (s) =0 [11,[2] - (12)
‘ e fll e

where the columns of Q correspond to the chords of the chosen tree T.

f11
from the graph matrix G. Every entry of Q
T T
‘ 11 . 11
becomes an edge between current nodes (bot@om row) of the flowgraph
Thus A is obtained from Q and corresponds
m T
11 11
to the KCL equation relating the current nodes of the flowgraph. The

gains +1, (-1) associated with the edges corresponding to the columns

The algorithm finds Q

of A are entered into G , for -1, (+1) entries of Qf . The KVL
11 M1 11
matrix equation can be written as B,V (s) = [U B, JV (s) = 0, where
fe f12 e
the column order of Bf is the same &s that of Qf so that the columns of

Bf correspond to the branches of T. Since it is well known [1],[2]

12
that . P
Q. = ["Bf ] . (13)
11 ~12 ) '
it follows that
A=A | | (1)
22 M1
and
G =G : : : (15)
12 ™M1
Qf is generated from the first two rows of G. From rows 3 and 4 of

W
4.1 .

G, the algorithm generates Submatrices V and C of Am (as outlined in
. III- iv). During this stage in the algorithm the gains and frequency

-

\‘-\ N




tags of array A(j) and rov 5 of G are transfTerred to the proper positions

in Gn and Fr respectively. Finally, from row 6 of G are determined
13
the positions of the "+1" and "-1" of edge J in the last column of A .

Matrices Am, Gn and F completely describe the closed flowgreph. The
following example will clarify the algorithm.

IV. EXAMPLE OF GENERATION OF Am, Gn and F

Given the linear active network N (Fig. 5a) v-o/vi is to be evaluated

by first obtaining a closed flovgraph, by the following steps:

Step 1: Obtain the equivalent network (Fig. 5b)
Step 2: Obtain the linear graph (Fig. 5¢)

Step 3: Select a tree T and number the edges of the graph following
the procedure outlined previously

Step 4: Obtain the graph matrix G and array A(J) and print their values

in the e input cards. Use one card to enter the number of edges
e and nodes v.

(2 4 3 1 3 4]
3 3 k211
11 3 0 5 6
G = 1 2 3 4 5 6 and A(§) = [Y;b Y30 Zg Z¢]
0 0 6 0 0 O '
(0 0 0 1 0 1]
Step 5: va is generated:
11
-1 0 0
Qf = (-1 -1 1
114 0 1 -1
from which matrices A - , A Gn , and G are determined.
11 M2 " ~ M
Step 6: Submatrices V., C, Gn1“ and Fr are generated next.
3

Step T7: 1In the last cglumn of Am the incidence of edge J is defined.

Matrices Am’ Gn’ and ¥ are given as follows:




1 2 3 45 6 7 8 9 10 11 12 13 1k 15 16 17 18

11 1 ! i 11 |
2 1 1] i -1 |
3 1 1! 0 ! -15
2 s 1-1 -1 i | 1 B
-4 =4 = i
6 -1,-1; ! 1
“““““““““ S B
ae T b1 -1 - | 1 :
m 8 { -1 -1 i
9 ‘o | -1 -1 1
10 Pl | H -1
11 , ; 11 1 Y !
12L_ -5 1 1 5 -1 ; %d
G = [1 1 1-1-1 1¢{-1-1-1 1 1 -1 i z5 Zg Yy b Yo 0]
P=l 0 ? 0 i 0 i 0]

and the corresponding flowgraph is shown in Fig. 6. Thé number of nodes
~of the flowgraph is equal twice e, or twice the nwiber of edges of the
linear graph. The number of edges in the flowgraph is equal to:

ef = 2qt+d+p+l, where q is the number of entries in Qf

d 1s the number of dependent generators,
. p .is the number of passive elements
1

corresponds to j, the "unknown".

V. CONCLUSIONS

For the generation of a closed flowgraph a concise algorithm has
been developed. The method presented is simpler than the method described
in the literature [6]-[10], by using a simpler coded input and by making
use of the duality existing between f-cutsets and f-circuit sets of
the graph. The method provides all information necessary to implement
the algorithm of Dunn end Chan (14], which evaluates the closed flow-
graph, since this algorithm uses the non-oriented flowgraph incidence
matrix A . Alternative evaluations of the closed flowgraph can be
obtained by the procédure of Happ et al [6]-[10] or possibly by using
the connection matrix C as outlined by Seshu, Hohn, and Aufenkamp [15].
A program (Fortran IV) has been written for the IBM 360 system, which
generates the flowgraph as described.
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